Access Restriction

Author Lombardi, Lionello A.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Language English
Abstract The structure of a digital computer programming language which covers a wide class of business and file processing applications is presented. Such a structure, based on identifying and incorporating into a compiler the aspects common to all processes of such class, permits writing extremely compact programs, even for comparatively complex applications, in terms of tables of control expressions which express only information characteristic of the particular application. Furthermore, local changes of a process (e.g. changes affecting only one of the output files involved) can be effected by local modifications in the program (e.g. modification of only one entry of the tables). This structure also allows for inexpensive preparation of loading-speed compilers which translate the source programs into efficient machine codes.The approach adopted here departs from conventional mechanical language design philosophies. It stresses the structural analysis of the class of processes to be represented in the languages, as opposed to emphasizing formal (i.e., contents-independent) syntactical definitions. It relies exclusively on nonprocedural representation of processes as sets (tables) of relations between data and results (there are no control statements such as GO TO, etc.), instead of using procedure descriptions (which are one-to-one translations of flowcharts). Here an invariant pattern of procedure is identified as characteristic of the class of all batch file processes.
Description Affiliation: Massachusetts Institute of Technology, Cambridge, MA (Lombardi, Lionello A.)
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2005-08-01
Publisher Place New York
Journal Communications of the ACM (CACM)
Volume Number 7
Issue Number 2
Page Count 8
Starting Page 104
Ending Page 111

Open content in new tab

   Open content in new tab
Source: ACM Digital Library