Thumbnail
Access Restriction
Subscribed

Author Scott, Dana S.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Language English
Subject Keyword Approximation ♦ Function spaces ♦ &lgr;-calculus models ♦ Denotational semantics ♦ Automata ♦ Partial functions ♦ Logic ♦ Programming languages ♦ Computability
Abstract Logic has been long interested in whether answers to certain questions are computable in principle, since the outcome puts bounds on the possibilities of formalization. More recently, precise comparisons in the efficiency of decision methods have become available through the developments in complexity theory. These, however, are applications to logic, and a big question is whether methods of logic have significance in the other direction for the more applied parts of computability theory.Programming languages offer an obvious opportunity as their syntactic formalization is well advanced; however, the semantical theory can hardly be said to be complete. Though we have many examples, we have still to give wide-ranging mathematical answers to these queries: What is a machine? What is a computable process? How (or how well) does a machine simulate a process? Programs naturally enter in giving descriptions of processes. The definition of the precise meaning of a program then requires us to explain what are the objects of computation (in a way, the statics of the problem) and how they are to be transformed (the dynamics).So far the theories of automata and of nets, though most interesting for dynamics, have formalized only a portion of the field, and there has been perhaps too much concentration on the finite-state and algebraic aspects. It would seem that the understanding of higher-level program features involves us with infinite objects and forces us to pass through several levels of explanation to go from the conceptual ideas to the final simulation on a real machine. These levels can be made mathematically exact if we can find the right abstractions to represent the necessary structures. The experience of many independent workers with the method of data types as lattices (or partial orderings) under an information content ordering, and with their continuous mappings, has demonstrated the flexibility of this approach in providing definitions and proofs, which are clean and without undue dependence on implementations. Nevertheless much remains to be done in showing how abstract conceptualizations can (or cannot) be actualized before we can say we have a unified theory.
Description Affiliation: Univ. of Oxford, Oxford, U. K. (Scott, Dana S.)
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2005-08-01
Publisher Place New York
Journal Communications of the ACM (CACM)
Volume Number 20
Issue Number 9
Page Count 8
Starting Page 634
Ending Page 641


Open content in new tab

   Open content in new tab
Source: ACM Digital Library