Access Restriction

Author Liu, Yang ♦ Dwyer, Chris ♦ Lebeck, Alvin R.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2010
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword DNA ♦ SIMD ♦ Self-organizing ♦ Data parallel ♦ Nanocomputing
Abstract The integration of novel nanotechnologies onto silicon platforms is likely to increase fabrication defects compared with traditional CMOS technologies. Furthermore, the number of nodes connected with these networks makes acquiring a global defect map impractical. As a result, on-chip networks will provide defect tolerance by self-organizing into irregular topologies. In this scenario, simple static routing algorithms based on regular physical topologies, such as meshes, will be inadequate. Additionally, previous routing approaches for irregular networks assume abundant resources and do not apply to this domain of resource-constrained self-organizing nano-scale networks. Consequently, routing algorithms that work in irregular networks with limited resources are needed. In this article, we explore routing for self-organizing nano-scale irregular networks in the context of a Self-Organizing SIMD Architecture (SOSA). Our approach trades configuration time and a small amount of storage for reduced communication latency. We augment an Euler path-based routing technique for trees to generate static shortest paths between certain pairs of nodes while remaining deadlock free. Simulations of several applications executing on SOSA show our proposed routing algorithm can reduce execution time by 8&percent; to 30&percent;.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2008-03-01
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 6
Issue Number 1
Page Count 21
Starting Page 1
Ending Page 21

Open content in new tab

   Open content in new tab
Source: ACM Digital Library