Access Restriction

Author Hickey, T. ♦ Ju, Q. ♦ Van Emden, M. H.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2001
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Abstract We start with a mathematical definition of a real interval as a closed, connected set of reals. Interval arithmetic operations (addition, subtraction, multiplication, and division) are likewise defined mathematically and we provide algorithms for computing these operations assuming exact real arithmetic. Next, we define interval arithmetic operations on intervals with IEEE 754 floating point endpoints to be sound and optimal approximations of the real interval operations and we show that the IEEE standard's specification of operations involving the signed infinities, signed zeros, and the exact/inexact flag are such as to make a correct and optimal implementation more efficient. From the resulting theorems, we derive data that are sufficiently detailed to convert directly to a program for efficiently implementing the interval operations. Finally, we extend these results to the case of general intervals, which are defined as connected sets of reals that are not necessarily closed.
ISSN 00045411
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2001-09-01
Publisher Place New York
e-ISSN 1557735X
Journal Journal of the ACM (JACM)
Volume Number 48
Issue Number 5
Page Count 31
Starting Page 1038
Ending Page 1068

Open content in new tab

   Open content in new tab
Source: ACM Digital Library