Thumbnail
Access Restriction
Open

Author Nelson, Aaron B. ♦ Faraguna, Ugo ♦ Zoltan, Jeffrey T. ♦ Tononi, Giulio ♦ Cirelli, Chiara
Source PubMed Central
Content type Text
Publisher MDPI
File Format PDF
Date Created 2013-03-19
Copyright Year ©2013
Language English
Difficulty Level Medium
Subject Domain (in DDC) Technology ♦ Medicine & health
Abstract Sleep changes were studied in mice (n = 59) from early adolescence to adulthood (postnatal days P19–111). REM sleep declined steeply in early adolescence, while total sleep remained constant and NREM sleep increased slightly. Four hours of sleep deprivation starting at light onset were performed from ages P26 through adulthood (>P60). Following this acute sleep deprivation all mice slept longer and with more consolidated sleep bouts, while NREM slow wave activity (SWA) showed high interindividual variability in the younger groups, and increased consistently only after P42. Three parameters together explained up to 67% of the variance in SWA rebound in frontal cortex, including weight-adjusted age and increase in alpha power during sleep deprivation, both of which positively correlated with the SWA response. The third, and strongest predictor was the SWA decline during the light phase in baseline: mice with high peak SWA at light onset, resulting in a large SWA decline, were more likely to show no SWA rebound after sleep deprivation, a result that was also confirmed in parietal cortex. During baseline, however, SWA showed the same homeostatic changes in adolescents and adults, declining in the course of sleep and increasing across periods of spontaneous wake. Thus, we hypothesize that, in young adolescent mice, a ceiling effect and not the immaturity of the cellular mechanisms underlying sleep homeostasis may prevent the SWA rebound when wake is extended beyond its physiological duration.
ISSN 20763425
Age Range above 22 year
Educational Use Research
Interactivity Type Expositive
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2013-03-01
Rights Holder MDPI
e-ISSN 20763425
Journal Brain Sciences
Volume Number 3
Issue Number 1
Page Count 26
Starting Page 318
Ending Page 343


Open content in new tab

   Open content in new tab
Source: PubMed Central