Access Restriction

Author Chen, Xianmin ♦ Jha, Niraj K.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2014
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword FinFET ♦ Asymmetric-workfunction shorted-gate ♦ Chip multiprocessor ♦ Leakage power ♦ Shorted-gate
Abstract FinFET has begun replacing CMOS at the 22nm technology node because of its enhanced ability to mitigate short-channel effects. Although leakage power of FinFET logic gates is lower than their CMOS counterparts, it still contributes to a large part of total power consumption. In this article, we show how ultra-low-leakage FinFET chip multiprocessors (CMPs) can be designed using a hybrid logic style. This hybrid style exploits the ultra-low-leakage feature of asymmetric-workfunction shorted-gate (ASG) FinFETs and the high-performance feature of shorted-gate (SG) FinFETs. We explore the impact of the hybrid style at both the module and CMP levels. To do this, we have developed FinFET logic libraries targeted at SG and ASG logic gates, suitably characterized for various parameters of interest. We have also modified existing tools and created a framework to evaluate the hybrid designs of SRAMs, caches, and CMPs. Using the design with SG FinFETs as the baseline for comparison, our experimental results show that the hybrid style can reduce leakage power of execution units to as low as 10.6% of the baseline without hurting performance, that of SRAMs to between 21.5% and 4.8% of the baseline with 0%-8.3% delay overhead, and that of CMPs to 10.0% of the baseline with negligible performance degradation.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2014-10-06
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 11
Issue Number 1
Page Count 16
Starting Page 1
Ending Page 16

Open content in new tab

   Open content in new tab
Source: ACM Digital Library