Thumbnail
Access Restriction
Subscribed

Author Garg, Siddharth ♦ Marculescu, Diana ♦ Marculescu, Radu
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2012
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Power management ♦ Dynamic voltage and frequency scaling ♦ Process variations ♦ Reliability
Abstract Runtime power management is a critical technique for reducing the energy footprint of digital electronic devices and enabling sustainable computing, since it allows electronic devices to dynamically adapt their power and energy consumption to meet performance requirements. In this article, we consider the case of MultiProcessor Systems-on-Chip (MPSoC) implemented using multiple Voltage and Frequency Islands (VFIs) relying on fine-grained Dynamic Voltage and Frequency Scaling (DVFS) to reduce the system power dissipation. In particular, we present a framework to theoretically analyze the impact of three important technology-driven constraints; (i) reliability-driven upper limits on the maximum supply voltage; (ii) inductive noise-driven constraints on the maximum rate of change of voltage/frequency; and (iii) the impact of manufacturing process variations on the performance of DVFS control for multiple VFI MPSoCs. The proposed analysis is general, in the sense that it is not bound to a specific DVFS control algorithm, but instead focuses on theoretically bounding the performance that any DVFS controller can possibly achieve. Our experimental results on real and synthetic benchmarks show that in the presence of reliability- and temperature-driven constraints on the maximum frequency and maximum frequency increment, any DVFS control algorithm will lose up to 87% performance in terms of the number of steps required to reach a reference steady state. In addition, increasing process variations can lead to up to 60% of fabricated chips being unable to meet the specified DVFS control specifications, irrespective of the DVFS algorithm used. Nonetheless, we note that although conventional DVFS might become less effective with technology scaling, it will continue to play an important role in the context of emerging power management techniques, for example, for massively parallel multiprocessor systems where only a subset of cores can be turned on at any given point of time due to total power constraints.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2012-11-01
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 8
Issue Number 4
Page Count 17
Starting Page 1
Ending Page 17


Open content in new tab

   Open content in new tab
Source: ACM Digital Library