Access Restriction

Author Rahman, Mostafizur ♦ Khasanvis, Santosh ♦ Moritz, Csaba Andras
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2015
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword CMOS SRAM alternative ♦ Memory circuit ♦ $N^{3}ASIC$ ♦ Benchmarking ♦ Grid-based design ♦ Low-power design ♦ Nanowire computing fabric ♦ Nanowire volatile RAM ♦ Semiconductor nanowires
Abstract Maintaining benefits of CMOS technology scaling is becoming challenging, primarily due to increased manufacturing complexities and unwanted passive power dissipations. This is particularly challenging in SRAM, where manufacturing precision and leakage power control are critical issues. To alleviate these challenges, we proposed a novel volatile memory alternative to SRAM called nanowire volatile RAM (NWRAM). Due to NWRAM's regular grid-based layout and innovative circuit style, manufacturing complexities are reduced and, at the same time, considerable benefits are attained in terms of performance and leakage power reduction. In this article we elaborate NWRAM's circuit aspects and manufacturability, and quantify benefits at 16nm technology node through simulation against state-of-the-art 6T-SRAM and gridded 8T-SRAM designs. Our results show that when lower bounds in design rules are considered, 10T-NWRAM's read and write time are 1.38x and 2x faster, and the leakage power is 14x better in comparison to high-performance 6T-SRAM. Similarly the 10T-NWRAM achieves 1.3x and 1.9x read and write performance, and 35x leakage power improvements compared to high-performance 8T-SRAM. 10T-NWRAM's density is comparable to 6T-SRAM and 8T-SRAM for lower bounds, but exhibits higher active power in similar comparisons. This article details all benchmarking results and provides thorough analysis of NWRAM's evaluations.
Description Author Affiliation: University of Massachusetts Amherst, MA (Rahman, Mostafizur; Khasanvis, Santosh; Moritz, Csaba Andras)
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2015-09-01
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 12
Issue Number 3
Page Count 13
Starting Page 1
Ending Page 13

Open content in new tab

   Open content in new tab
Source: ACM Digital Library