Access Restriction

Author Xu, Wen ♦ Wu, Qinghua ♦ Liu, Xuejun ♦ Tang, Aohan ♦ Dore, Anthony J. ♦ Heal, Mathew R.
Source Paperity
Content type Text
Publisher Springer Berlin Heidelberg
File Format PDF ♦ HTM / HTML
Copyright Year ©2015
Subject Keyword Environment ♦ Environmental chemistry ♦ Ecotoxicology ♦ Environmental health ♦ Atmospheric protection/air quality control/air pollution ♦ Waste water technology / water pollution control / water management / aquatic pollution
Abstract Air pollution is one of the most serious environmental problems in China due to its rapid economic development alongside a very large consumption of fossil fuel, particularly in the North China Plain (NCP). During the period 2011–2014, we integrated active and passive sampling methods to perform continuous measurements of NH3, HNO3, NO2, and PM2.5 at two urban, one suburban, and two rural sites in the NCP. The annual average concentrations of NH3, NO2, and HNO3 across the five sites were in the ranges 8.5–23.0, 22.2–50.5, and 5.5–9.7 μg m−3, respectively, showing no significant spatial differences for NH3 and HNO3 but significantly higher NO2 concentration at the urban sites. At each site, annual average concentrations of NH3 and NO2 showed increasing and decreasing trends, respectively, while there was no obvious trend in annual HNO3 concentrations. Daily PM2.5 concentrations ranged from 11.8 to 621.0 μg m−3 at the urban site, from 19.8 to 692.9 μg m−3 at the suburban site, and from 23.9 to 754.5 μg m−3 at the two rural sites, with more than 70 % of sampling days exceeding 75 μg m−3. Concentrations of water-soluble ions in PM2.5 ranked differently between the non-rural and rural sites. The three dominant ions were NH4 +, NO3 −, and SO4 2− and mainly existed as (NH4)2SO4, NH4HSO4, and NH4NO3, and their concentrations averaged 48.6 ± 44.9, 41.2 ± 40.8, and 49.6 ± 35.9 μg m−3 at the urban, suburban, and rural sites, respectively. Ion balance calculations indicated that PM2.5 was neutral at the non-rural sites but acidic at the rural sites. Seasonal variations of the gases and aerosols exhibited different patterns, depending on source emission strength and meteorological conditions. Our results suggest that a feasible pathway to control PM2.5 pollution in the NCP should target ammonia and acid gases together.
ISSN 09441344
Learning Resource Type Article
Publisher Date 2015-10-27
e-ISSN 16147499
Journal Environmental Science and Pollution Research
Volume Number 23
Issue Number 2