Thumbnail
Access Restriction
Subscribed

Author Huang, Haiyao ♦ Densmore, Douglas
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2014
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Synthetic biology ♦ Genetic circuits ♦ Microfluidics
Abstract One goal of synthetic biology is to design and build genetic circuits in living cells for a range of applications. Our incomplete knowledge of the effects of metabolic load and biological “crosstalk” on the host cell make it difficult to construct multilevel genetic logic circuits in a single cell, limiting the scalability of engineered biological systems. Microfluidic technologies provide reliable and scalable construction of synthetic biological systems by allowing compartmentalization of cells encoding simple genetic circuits and the spatiotemporal control of communication among these cells. This control is achieved via valves on the microfluidics chip which restrict fluid flow when activated. We describe a Computer Aided Design (CAD) framework called “Fluigi” for optimizing the layout of genetic circuits on a microfluidic chip, generating the control sequence of the associated signaling fluid valves, and simulating the behavior of the configured biological circuits. We demonstrate the capabilities of Fluigi on a set of Boolean algebraic benchmark circuits found in both synthetic biology and electrical engineering and a set of assay-based benchmark circuits. The integration of microfluidics and synthetic biology has the capability to increase the scale of engineered biological systems for applications in DNA assembly, biosensors, and screening assays for novel orthogonal genetic parts.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2014-12-01
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 11
Issue Number 3
Page Count 19
Starting Page 1
Ending Page 19


Open content in new tab

   Open content in new tab
Source: ACM Digital Library