Thumbnail
Access Restriction
Open

Author Gao, Y. ♦ Yang, Y. ♦ Rangwala, N. ♦ Cao, M. ♦ Low, D. ♦ Hu, P.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword APPLIED LIFE SCIENCES ♦ RADIATION PROTECTION AND DOSIMETRY ♦ DIFFUSION ♦ FLUOROSCOPY ♦ GEOMETRY ♦ IMAGES ♦ IN VIVO ♦ NEOPLASMS ♦ NMR IMAGING ♦ RADIOTHERAPY ♦ TEMPERATURE RANGE 0273-0400 K
Abstract Purpose: To develop a reliable, 3D distortion-free diffusion MRI technique for longitudinal tumor response assessment and MRI-guided adaptive radiotherapy(RT). Methods: A diffusion prepared 3D turbo spin echo readout (DP-TSE) sequence was developed and compared with the conventional diffusion-weighted single-shot echo-planar-imaging (DW-ssEPI) sequence in a commercially available diffusion phantom, and one head-and-neck and one brain cancer patient on an MRI-guided RT system (ViewRay). In phantom study, the geometric fidelity was quantified as the ratio between the left-right (RL) and anterior-posterior (AP) dimension. Ten slices were measured on DP-TSE, DW-ssEPI and standard TSE images where the later was used as the geometric reference. ADC accuracy was verified at both 0°C (reference ADC available) and room temperature with a range of diffusivity between 0.35 and 2.0*10{sup −3}mm{sup 2}/s. The ADC reproducibility was assessed based on 8 room-temperature measurements on 6 different days. In the pilot single-slice in-vivo study, CT images were used as the geometric reference, and ADC maps from both diffusion sequences were compared. Results: Distortion and susceptive-related artifact were severe in DW-ssEPI, with significantly lower RL/AP ratio (0.9579±0.0163) than DP-TSE (0.9990±0.0031) and TSE (0.9995±0.0031). ADCs from the two diffusion sequences both matched well with the vendor-provided values at 0°C; however DW-ssEPI fails to provide accurate ADC for high diffusivity vials at room temperature due to high noise level (10 times higher than DP-TSE). The DP-TSE sequence had excellent ADC reproducibility with <4% ADC variation among 8 separate measurements. In patient study, DP-TSE exhibited substantially improved geometric reliability. ROI analysis in ADC maps generated from DP-TSE and DW-ssEPI showed <5% difference where high b-value images were excluded from the latter approach due to excessive noise level. Conclusion: A diffusion MRI sequence with excellent geometric fidelity, accurate and highly reproducible ADC measurements was proposed for longitudinal tumor response assessment using an MRI-guided RT system. Yu Gao acknowledges research support from ViewRay.
ISSN 00942405
Educational Use Research
Learning Resource Type Article
Publisher Date 2016-06-15
Publisher Place United States
Journal Medical Physics
Volume Number 43
Issue Number 6


Open content in new tab

   Open content in new tab