Thumbnail
Access Restriction
Subscribed

Author Tang, Weiguo ♦ Wang, Lei ♦ Lombardi, Fabrizio
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2009
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword DSP nanosystem ♦ Distributed arithmetic ♦ Algorithmic error compensation ♦ Inner product
Abstract Emerging technologies such as silicon NanoWires (NW) and Carbon NanoTubes (CNT) have shown great potential for building the next generation of computing systems in the nano ranges. However, the excessive number of defects originating from bottom-up fabrication (such as a self-assembly process) poses a pressing challenge for achieving scalable system integration. This article proposes a new nanosystem architecture that employs nanowire crossbars for Digital Signal Processing (DSP) applications. Distributed arithmetic is utilized such that complex signal processing computation can be mapped into regular memory operations, thus making this architecture well suited for implementation by nanowire crossbars. Furthermore, the inherent features of DSP-type computation provide new insights to remedy errors (as logic/computational manifestation of defects). A new defect/error-tolerant technique that exploits algorithmic error compensation is proposed; at system level different trade-offs between correctness in output and performance are established while retaining low overhead in its implementation. As an instance of its application, the proposed approach has been utilized to a generic DSP nanosystem performing frequency-selective filtering. Simulation results show that the proposed nanoDSP introduces only a minor performance degradation under high defect rates and at a range of operational conditions. The proposed technique also features good scalability and viability for various DSP applications.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2009-11-01
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 5
Issue Number 4
Page Count 22
Starting Page 1
Ending Page 22


Open content in new tab

   Open content in new tab
Source: ACM Digital Library