Thumbnail
Access Restriction
Subscribed

Author Kleinberg, Jon ♦ Slivkins, Aleksandrs ♦ Wexler, Tom
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2009
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Distributed algorithms ♦ Doubling dimension ♦ Embeddings ♦ Metric spaces ♦ Triangulation
Abstract Concurrent with recent theoretical interest in the problem of metric embedding, a growing body of research in the networking community has studied the distance matrix defined by node-to-node latencies in the Internet, resulting in a number of recent approaches that approximately embed this distance matrix into low-dimensional Euclidean space. There is a fundamental distinction, however, between the theoretical approaches to the embedding problem and this recent Internet-related work: in addition to computational limitations, Internet measurement algorithms operate under the constraint that it is only feasible to measure distances for a linear (or near-linear) number of node pairs, and typically in a highly structured way. Indeed, the most common framework for Internet measurements of this type is a beacon-based approach one chooses uniformly at random a constant number of nodes (“beacons”) in the network, each node measures its distance to all beacons, and one then has access to only these measurements for the remainder of the algorithm. Moreover, beacon-based algorithms are often designed not for embedding but for the more basic problem of $\textit{triangulation},$ in which one uses the triangle inequality to infer the distances that have not been measured. Here we give algorithms with provable performance guarantees for beacon-based triangulation and embedding. We show that in addition to multiplicative error in the distances, performance guarantees for beacon-based algorithms typically must include a notion of $\textit{slack}—a$ certain fraction of all distances may be arbitrarily distorted. For metric spaces of bounded doubling dimension (which have been proposed as a reasonable abstraction of Internet latencies), we show that triangulation-based distance reconstruction with a constant number of beacons can achieve multiplicative error 1 + Δ on a 1 ™ ε fraction of distances, for arbitrarily small constants Δ and ε. For this same class of metric spaces, we give a beacon-based embedding algorithm that achieves constant distortion on a 1 ™ ε fraction of distances; this provides some theoretical justification for the success of the recent Global Network Positioning algorithm of Ng and Zhang [2002], and it forms an interesting contrast with lower bounds showing that it is not possible to embed $\textit{all}$ distances in a doubling metric space with constant distortion. We also give results for other classes of metric spaces, as well as distributed algorithms that require only a sparse set of distances but do not place too much measurement load on any one node.
ISSN 00045411
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2009-09-08
Publisher Place New York
e-ISSN 1557735X
Journal Journal of the ACM (JACM)
Volume Number 56
Issue Number 6
Page Count 37
Starting Page 1
Ending Page 37


Open content in new tab

   Open content in new tab
Source: ACM Digital Library