Access Restriction

Author Cunningham, J. L. ♦ Medlin, D. J. ♦ Krauss, G.
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©1999
Language English
Subject Domain (in DDC) Natural sciences & mathematics ♦ Chemistry & allied sciences ♦ Technology ♦ Engineering & allied operations
Subject Keyword induction hardening ♦ medium carbon steel ♦ torsional strength ♦ Characterization and Evaluation of Materials ♦ Materials Science ♦ Tribology, Corrosion and Coatings ♦ Quality Control, Reliability, Safety and Risk ♦ Engineering Design
Abstract The torsional strength and microstructural response to induction hardening of a 10V45 steel with prior cold work was evaluated. The vanadium-microalloyed 1045 (10V45) steel was characterized in three conditions: as-hot-rolled, 18% cold-reduced, and 29% cold-reduced. Two of these evaluations, 10V45 as-hot-rolled and 10V45-18%, were subjected to stationary and progressive induction hardening to three nominal case depths: 2, 4, and 6 mm. All specimens were subsequently furnace tempered at 190 °C for 1 h. The martensitic case microstructures contained residual lamellar carbides due to incomplete dissolution of the pearlitic carbides in the prior microstructure. Torsional overload strength, as measured by maximum torque capacity, is greatly increased by increasing case depth, and to a lesser extent by increasing prior cold work level. Maximum torque capacity ranges from 2520 to 3170 N · m, depending upon induction hardening processing. Changing induction hardening processing from stationary (single-shot) to progressive (scan) had little effect on torque capacity.
ISSN 10599495
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1999-01-01
Publisher Place New York
e-ISSN 15441024
Journal Journal of Materials Engineering and Performance
Volume Number 8
Issue Number 4
Page Count 8
Starting Page 401
Ending Page 408

Open content in new tab

   Open content in new tab
Source: SpringerLink