Thumbnail
Access Restriction
Subscribed

Author Lee, Wonseok ♦ Limb, Jae ♦ Ryou, Jae Hyun ♦ Yoo, Dongwon ♦ Chung, Theodore ♦ Dupuis, Russell D.
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©2006
Language English
Subject Domain (in DDC) Natural sciences & mathematics ♦ Chemistry & allied sciences ♦ Technology ♦ Engineering & allied operations
Subject Keyword Light emitting diode (LED) ♦ gallium nitride (GaN) ♦ metalorganic chemical vapor deposition (MOCVD) ♦ InGaN ♦ Optical and Electronic Materials ♦ Characterization and Evaluation of Materials ♦ Electronics and Microelectronics, Instrumentation ♦ Solid State Physics and Spectroscopy
Abstract We investigated the electrical and structural qualities of Mg-doped p-type GaN layers grown under different growth conditions by metalorganic chemical vapor deposition (MOCVD). Lower 300 K free-hole concentrations and rough surfaces were observed by reducing the growth temperature from 1,040°C to 930°C. The hole concentration, mobility, and electrical resistivity were improved slightly for Mg-doped GaN layers grown at 930°C with a lower growth rate, and also an improved surface morphology was observed. In$_{0.25}$Ga$_{0.75}$N/GaN multiple-quantum-well light emitting diodes (LEDs) with p-GaN layers grown under different conditions were also studied. It was found from photoluminescence studies that the optical and structural properties of the multiple quantum wells in the LED structure were improved by reducing the growth temperature of the p-layer due to a reduced detrimental thermal annealing effect of the active region during the GaN:Mg p-layer growth. No significant difference in the photoluminescence intensity depending on the growth time of the p-GaN layer was observed. However, it was also found that the electroluminescence (EL) intensity was higher for LEDs having p-GaN layers with a lower growth rate. Further improvement of the p-GaN layer crystalline and structural quality may be required for the optimization of the EL properties of long-wavelength (∼540 nm) green LEDs.
ISSN 03615235
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2006-01-01
Publisher Place New York
e-ISSN 1543186X
Journal Journal of Electronic Materials
Volume Number 35
Issue Number 4
Page Count 5
Starting Page 587
Ending Page 591


Open content in new tab

   Open content in new tab
Source: SpringerLink