Access Restriction

Author Lai, Yi Shao ♦ Kao, Chin Li
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©2006
Language English
Subject Domain (in DDC) Natural sciences & mathematics ♦ Chemistry & allied sciences
Subject Keyword Electromigration ♦ reliability ♦ electrothermal coupling analysis ♦ Black’s equation ♦ Optical and Electronic Materials ♦ Characterization and Evaluation of Materials ♦ Electronics and Microelectronics, Instrumentation ♦ Solid State Physics and Spectroscopy
Abstract Electromigration reliability of solder interconnects is dominated by current density and temperature inside the interconnects. For flip-chip packages, current densities around the regions where the traces connect a solder bump increase significantly due to the differences in feature sizes and electric resistivities between the solder bump and its adjacent traces. This current-crowding effect along with induced Joule heating accelerates electromigration failures. In this paper, the effects of current crowding and Joule heating in a flip-chip package are examined and quantified by three-dimensional electrothermal coupling analysis. We apply a volumetric averaging technique to cope with the current-crowding singularity. The volumetrically averaged current density and the maximum temperature in a solder bump are integrated into Black’s equation to calibrate the experimental electromigration fatigue lives.
ISSN 03615235
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2006-01-01
Publisher Place New York
e-ISSN 1543186X
Journal Journal of Electronic Materials
Volume Number 35
Issue Number 5
Page Count 6
Starting Page 972
Ending Page 977

Open content in new tab

   Open content in new tab
Source: SpringerLink