Access Restriction

Author Grujicic, M. ♦ Pandurangan, B. ♦ Bell, W.C. ♦ Coutris, N. ♦ Cheeseman, B.A. ♦ Fountzoulas, C. ♦ Patel, P. ♦ Templeton, D.W. ♦ Bishi, K.D.
Source SpringerLink
Content type Text
Publisher Springer US
File Format PDF
Copyright Year ©2009
Language English
Subject Domain (in DDC) Technology ♦ Engineering & allied operations
Subject Keyword ballistic performance ♦ electron microscopy ♦ failure analysis ♦ glass ♦ material modeling ♦ Engineering Design ♦ Quality Control, Reliability, Safety and Risk ♦ Tribology, Corrosion and Coatings ♦ Materials Science ♦ Characterization and Evaluation of Materials
Abstract In our recent work (Grujicic et al., Int. J. Impact Eng., 2008), various open-literature experimental findings pertaining to the ballistic behavior of soda-lime glass were used to construct a simple, physically based, high strain rate, high-pressure, large-strain mechanical model for this material. The model was structured in such a way that it is suitable for direct incorporation into standard commercial transient non-linear dynamics finite element-based software packages like ANSYS/Autodyn (Century Dynamics Inc., 2007) or ABAQUS/Explicit (Dessault Systems, 2007). To validate the material model, a set of finite element analyses of the edge-on-impact tests was conducted and the results compared with their experimental counterparts obtained in the recent work of Strassburger et al. (Proceedings of the 23rd International Symposium on Ballistics, Spain, April 2007; Proceedings of the 22nd International Symposium on Ballistics, November 2005, Vancouver, Canada). In general, a good agreement was found between the computational and the experimental results relative to: (a) the front shapes and the propagation velocities of the longitudinal and transverse waves generated in the target during impact and (b) the front shapes and propagation velocities of a coherent-damage zone (a zone surrounding the projectile/target contact surface which contains numerous micron and submicron-size cracks). However, substantial computational analysis/experiment disagreements were found relative to the formation of crack centers, i.e. relative to the presence and distribution of isolated millimeter-size cracks nucleated ahead of the advancing coherent-damage zone front. In the present work, it was shown that these disagreements can be substantially reduced if the glass model (Grujicic et al., Int. J. Impact Eng., 2008) is advanced to include a simple macrocracking algorithm based on the linear elastic fracture mechanics.
ISSN 10599495
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2009-01-28
Publisher Place Boston
e-ISSN 15441024
Journal Journal of Materials Engineering and Performance
Volume Number 18
Issue Number 8
Page Count 17
Starting Page 1012
Ending Page 1028

Open content in new tab

   Open content in new tab
Source: SpringerLink