Access Restriction

Author Lu, Xiang ♦ Iyer, S. Sundar Kumar ♦ Lee, Jin ♦ Doyle, Brian ♦ Fan, Zhineng ♦ Chu, Paul K. ♦ Hu, Chenming ♦ Cheung, Nathan W.
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©1998
Language English
Subject Domain (in DDC) Natural sciences & mathematics ♦ Chemistry & allied sciences
Subject Keyword Fracture mechanics ♦ hydrogen plasma ♦ plasma immersion ion implantation (PIII) ♦ separation by implantation of oxygen (SIMOX) ♦ silicon on insulator (SOI) ♦ Optical and Electronic Materials ♦ Characterization and Evaluation of Materials ♦ Electronics and Microelectronics, Instrumentation ♦ Solid State Physics and Spectroscopy
Abstract We have demonstrated feasibility to form silicon-on-insulator (SOI) substrates using plasma immersion ion implantation (PIII) for both separation by implantation of oxygen and ion-cut. This high throughput technique can substantially lower the high cost of SOI substrates due to the simpler implanter design as well as ease of maintenance. For separation by plasma implantation of oxygen wafers, secondary ion mass spectrometry analysis and cross-sectional transmission electron micrographs show continuous buried oxide formation under a single-crystal silicon overlayer with sharp Si/SiO$_{2}$ interfaces after oxygen plasma implantation and high-temperature (1300°C) annealing. Ion-cut SOI wafer fabrication technique is implemented for the first time using PIII. The hydrogen plasma can be optimized so that only one ion species is dominant in concentration and there are minimal effects by other residual ions on the ion-cut process. The physical mechanism of hydrogen induced silicon surface layer cleavage has been investigated. An ideal gas law model of the microcavity internal pressure combined with a two-dimensional finite element fracture mechanics model is used to approximate the fracture driving force which is sufficient to overcome the silicon fracture resistance.
ISSN 03615235
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1998-01-01
Publisher Place New York
e-ISSN 1543186X
Journal Journal of Electronic Materials
Volume Number 27
Issue Number 9
Page Count 8
Starting Page 1059
Ending Page 1066

Open content in new tab

   Open content in new tab
Source: SpringerLink