Thumbnail
Access Restriction
Subscribed

Author Porta, A. ♦ Guzzetti, S. ♦ Monta, N. ♦ Pagani, M. ♦ Somers, V. ♦ Malliani, A. ♦ Baselli, G. ♦ Cerutti, S.
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©2000
Language English
Subject Domain (in DDC) Technology ♦ Engineering & allied operations
Subject Keyword Conditional entropy ♦ Corrected conditional entropy ♦ Regularity ♦ Synchronisation ♦ Co-ordination ♦ Complexity ♦ Cardiovascular control ♦ Cardiovascular variability ♦ Human Physiology ♦ Computer Applications ♦ Neurosciences ♦ Imaging ♦ Radiology ♦ Biomedical Engineering
Abstract A unifying general approach to measure regularity, synchronisation and co-ordination is proposed. This approach is based on conditional entropy and is specifically designed to deal with a small amount of data (a few hundred samples). Quantitative and reliable indexes of regularity, synchronisation and co-ordination (ranging from 0 to 1) are derived in a domain (i.e. the information domain) different from time and frequency domains. The method is applied to evaluate regularity, synchronisation and co-ordination among cardiovascular beat-to-beat variability signals during sympathetic activation induced by head-up tilt (T), during the perturbing action produced by controlled respiration at 10, 15 and 20 breaths/min (CR10, CR15 and CR20), and after peripheral muscarinic blockade provoked by the administration of low and high doses of atropine (LD and HD). It is found that: (1) regularity of the RR interval series is around 0.209; (2) this increases during T, CR10 and HD; (3) the systolic arterial pressure (SAP) series is more regular (0.406) and its regularity is not affected by the specified experimental conditions; (4) the muscle sympathetic (MS) series is a complex signal (0.093) and its regularity is not influenced by HD and LD; (5) the RR interval and SAP series are significantly, though weakly, synchronised (0.093) and their coupling increases during T, CR10 and CR15; (6) the RR interval and respiration are coupled (0.152) and their coupling increases during CR10; (7) SAP and respiration are significantly synchronised (0.108) and synchronisation increases during CR10; (8) MS and respiration are uncoupled and become coupled (0.119) after HD; (9) the RR interval, SAP and respiration are significantly co-ordinated (0.118) and co-ordination increases during CR10 and CR15; (10) during HD the co-ordination among SAP, MS and the respiratory signal is larger than that among the RR interval, SAP, MS and the respiratory signal, thus indicating that the RR interval contributes towards reducing co-ordination.
ISSN 01400118
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2000-01-01
Publisher Place Berlin, Heidelberg
e-ISSN 17410444
Journal Medical and Biological Engineering and Computing
Volume Number 38
Issue Number 2
Page Count 9
Starting Page 180
Ending Page 188


Open content in new tab

   Open content in new tab
Source: SpringerLink