Thumbnail
Access Restriction
Subscribed

Author Sundelin, Janne J. ♦ Nurmi, Sami T. ♦ Lepistö, Toivo K. ♦ Ristolainen, Eero O.
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©2006
Language English
Subject Domain (in DDC) Natural sciences & mathematics ♦ Chemistry & allied sciences
Subject Keyword Lead-free solder ♦ creep ♦ SnAgCu ♦ Optical and Electronic Materials ♦ Characterization and Evaluation of Materials ♦ Electronics and Microelectronics, Instrumentation ♦ Solid State Physics and Spectroscopy
Abstract The effect of microstructure on the creep properties and the failure mechanism of SnAgCu solder joints was studied. Single overlap shear specimens made of FR-4 printed circuit boards (PCBs) with organic solderability preservative (OSP), NiAu, and immersion Sn surface finish were reflow-soldered with hypoeutectic, eutectic, and hypereutectic SnAgCu solder paste. Creep tests of the solder joints were performed at 85°C and 105°C under constant load. The effect of microstructure on the creep behavior of the joints was studied by examining the fracture surfaces and cross-sectional samples of the tested joints. Results show that the intermetallic compound at the interface between the PCB and solder affects the fracture behavior of SnAgCu solder joints, thus creating a significant difference in the creep properties of solder joints on different surface finishes. Composition of SnAgCu solder was also found to affect the creep properties of the joints.
ISSN 03615235
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2006-01-01
Publisher Place New York
e-ISSN 1543186X
Journal Journal of Electronic Materials
Volume Number 35
Issue Number 7
Page Count 7
Starting Page 1600
Ending Page 1606


Open content in new tab

   Open content in new tab
Source: SpringerLink