Thumbnail
Access Restriction
Subscribed

Author Bonnin, Geoffray ♦ Jannach, Dietmar
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2014
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Music ♦ Algorithm ♦ Evaluation ♦ Playlist
Abstract Most of the time when we listen to music on the radio or on our portable devices, the order in which the tracks are played is governed by so-called playlists. These playlists are basically sequences of tracks that traditionally are designed manually and whose organization is based on some underlying logic or theme. With the digitalization of music and the availability of various types of additional track-related information on the Web, new opportunities have emerged on how to automate the playlist creation process. Correspondingly, a number of proposals for automated playlist generation have been made in the literature during the past decade. These approaches vary both with respect to which kind of data they rely on and which types of algorithms they use. In this article, we review the literature on automated playlist generation and categorize the existing approaches. Furthermore, we discuss the evaluation designs that are used today in research to assess the quality of the generated playlists. Finally, we report the results of a comparative evaluation of typical playlist generation schemes based on historical data. Our results show that track and artist popularity can play a dominant role and that additional measures are required to better characterize and compare the quality of automatically generated playlists.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2014-11-12
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 47
Issue Number 2
Page Count 35
Starting Page 1
Ending Page 35


Open content in new tab

   Open content in new tab
Source: ACM Digital Library