Thumbnail
Access Restriction
Open

Author Ishakian, Vatche ♦ Sweha, Raymond ♦ Londoño, Jorge
Source CiteSeerX
Content type Text
File Format PDF
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Abstract Abstract—By colocating with other tenants of an Infrastructure as a Service (IaaS) offering, IaaS users could reap significant cost savings by judiciously sharing their use of the fixed-size instances offered by IaaS providers. This paper presents the blueprints of a Colocation as a Service (CaaS) framework. CaaS strategic services identify coalitions of selfinterested users that would benefit from colocation on shared instances. CaaS operational services provide the information necessary for, and carry out the reconfigurations mandated by strategic services. CaaS could be incorporated into an IaaS offering by providers; it could be implemented as a valueadded proposition by IaaS resellers; or it could be directly leveraged in a peer-to-peer fashion by IaaS users. To establish the practicality of such offerings, this paper presents XCS – a prototype implementation of CaaS on top of the Xen hypervisor. XCS makes specific choices with respect to the various elements of the CaaS framework: it implements strategic services based on a game-theoretic formulation of colocation; it features novel concurrent migration heuristics which are shown to be efficient; and it offers monitoring and accounting services at both the hypervisor and VM layers. Extensive experimental results obtained by running PlanetLab trace-driven workloads on the XCS prototype confirm the premise of CaaS – by demonstrating the efficiency and scalability of XCS, and by quantifying the potential cost savings accrued through the use of XCS. I.
Educational Role Student ♦ Teacher
Age Range above 22 year
Educational Use Research
Education Level UG and PG ♦ Career/Technical Study
Learning Resource Type Article