Thumbnail
Access Restriction
Open

Author Mikhailenko, V. V. ♦ Mikhailenko, V. S. ♦ Lee, Hae June
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword PLASMA PHYSICS AND FUSION TECHNOLOGY ♦ DISPERSION RELATIONS ♦ DISTRIBUTION FUNCTIONS ♦ ELECTRON TEMPERATURE ♦ FLOW RATE ♦ HEATING RATE ♦ INSTABILITY ♦ KINETIC EQUATIONS ♦ MAGNETIC FIELDS ♦ NONLINEAR PROBLEMS ♦ PLASMA ♦ RENORMALIZATION ♦ SCATTERING ♦ SHEAR ♦ TEMPERATURE GRADIENTS ♦ THERMAL CONDUCTIVITY ♦ TURBULENCE ♦ VISCOSITY
Abstract The developed kinetic theory for the stability of a magnetic-field-aligned (parallel) shear flow with inhomogeneous ion temperature [Mikhailenko et al., Phys. Plasmas 21, 072117 (2014)] predicted that a kinetic instability arises from the coupled reinforcing action of the flow velocity shear and ion temperature gradient in the cases where comparable ion and electron temperatures exist. In the present paper, the nonlinear theory was developed for the instability caused by the combined effects of ion-temperature-gradient and shear-flow (ITG–SF). The level of the electrostatic turbulence is determined for the saturation state of the instability on the basis of the nonlinear dispersion equation, which accounts for a nonlinear scattering of ions by the developed turbulence in a sheared flow. The renormalized quasilinear equation for the ion distribution function, which accounts for the turbulent scattering of ions by ITG–SF driven turbulence, was derived and employed for the estimation of the turbulent ion viscosity, the anomalous ion thermal conductivity, and anomalous ion heating rate at the saturation state of the instability.
ISSN 1070664X
Educational Use Research
Learning Resource Type Article
Publisher Date 2015-10-15
Publisher Place United States
Journal Physics of Plasmas
Volume Number 22
Issue Number 10


Open content in new tab

   Open content in new tab