Access Restriction

Author Ben-Amram, Amir M. ♦ Genaim, Samir
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2014
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Ranking functions ♦ Linear constraints ♦ Termination
Abstract In this article, we study the complexity of the problems: given a loop, described by linear constraints over a finite set of variables, is there a linear or lexicographical-linear ranking function for this loop? While existence of such functions implies termination, these problems are not equivalent to termination. When the variables range over the rationals (or reals), it is known that both problems are PTIME decidable. However, when they range over the integers, whether for single-path or multipath loops, the complexity has not yet been determined. We show that both problems are coNP-complete. However, we point out some special cases of importance of PTIME complexity. We also present complete algorithms for synthesizing linear and lexicographical-linear ranking functions, both for the general case and the special PTIME cases. Moreover, in the rational setting, our algorithm for synthesizing lexicographical-linear ranking functions extends existing ones, because our definition for such functions is more general, yet it has PTIME complexity.
ISSN 00045411
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2014-07-01
Publisher Place New York
e-ISSN 1557735X
Journal Journal of the ACM (JACM)
Volume Number 61
Issue Number 4
Page Count 55
Starting Page 1
Ending Page 55

Open content in new tab

   Open content in new tab
Source: ACM Digital Library