Thumbnail
Access Restriction
Open

Author Pełechaty, Mariusz ♦ Frankowski, Marcin
Source Paperity
Content type Text
Publisher Springer Berlin Heidelberg
File Format PDF ♦ HTM / HTML
Copyright Year ©2016
Subject Keyword Environment ♦ Environmental chemistry ♦ Ecotoxicology ♦ Environmental health ♦ Atmospheric protection/air quality control/air pollution ♦ Waste water technology / water pollution control / water management / aquatic pollution
Abstract The month-to-month variability of biomass and CaCO3 precipitation by dense charophyte beds was studied in a shallow Chara-lake at two depths, 1 and 3 m. Charophyte dry weights (d.w.), the percentage contribution of calcium carbonate to the dry weight and the precipitation of CaCO3 per 1 m2 were analysed from May to October 2011. Physical-chemical parameters of water were also measured for the same sample locations. The mean dry weight and calcium carbonate precipitation were significantly higher at 1 m than at 3 m. The highest measured charophyte dry weight (exceeding 2000 g m−2) was noted at 1 m depth in September, and the highest CaCO3 content in the d.w. (exceeding 80 % of d.w.) was observed at 3 m depth in August. The highest CaCO3 precipitation per 1 m2 exceeded 1695 g at 1 m depth in August. Significant differences in photosynthetically active radiation (PAR) were found between 1 and 3 m depths; there were no significant differences between depths for other water properties. At both sampling depths, there were distinct correlations between the d.w., CaCO3 content and precipitation and water properties. In addition to PAR, the water temperature and magnesium and calcium ion concentrations were among the most significant determinants of CaCO3 content and d.w. The results show that light availability seems to be the major factor in determining charophyte biomass in a typical, undisturbed Chara-lake. The study results are discussed in light of the role of charophyte vegetation in whole ecosystem functioning, with a particular focus on sedimentary processes and the biogeochemical cycle within the littoral zone.
ISSN 09441344
Learning Resource Type Article
Publisher Date 2016-11-01
e-ISSN 16147499
Journal Environmental Science and Pollution Research
Volume Number 23
Issue Number 22