Thumbnail
Access Restriction
Open

Author Zhang, Jijian ♦ Liu, Ni ♦ Xu, Ling ♦ Jiao, Huan
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword MATERIALS SCIENCE ♦ CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ♦ CONCENTRATION RATIO ♦ DOPED MATERIALS ♦ ERBIUM IONS ♦ GADOLINIUM TUNGSTATES ♦ LUMINESCENCE ♦ MOLYBDATES ♦ MULTI-PHOTON PROCESSES ♦ PHOSPHORS ♦ SILVER COMPOUNDS ♦ SOLIDS ♦ TEMPERATURE RANGE 0400-1000 K ♦ TETRAGONAL LATTICES ♦ THULIUM IONS ♦ URANIUM CARBIDES ♦ X RADIATION ♦ X-RAY DIFFRACTION ♦ YTTERBIUM IONS
Abstract Graphical abstract: The doping ions tune the UC luminescence of the T- AgGd(W,Mo){sub 2}O{sub 8}:Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} material. - Highlights: • AgGd(W,Mo){sub 2}O{sub 8}:Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} phosphors show color-tunable blue, green, and red UC emissions. • The samples’ UC emission color can be switched with the concentrations of doped ions. • The blue, green and red UC mechanisms are interpreted reasonably as three- and two- photon process. - Abstract: Tetragonal Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped AgGd(W,Mo){sub 2}O{sub 8} phosphors were prepared by the high-temperature solid-state method. When the phosphors were excited at 980 nm, the UC emission of blue at 475 nm, green at 525 and 550 nm, and red at 656 nm were corresponding to the {sup 1}G{sub 4} → {sup 3}H{sub 6} transition of Tm{sup 3+} ions, the {sup 2}H{sub 11/2},{sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} transitions of Er{sup 3+} ions, and the {sup 4}F{sub 9/2} → {sup 4}I{sub 15/2} transition of Er{sup 3+} ions, respectively. The blue UC emissions originate from a three-photon mechanism, while the green and red ones of Er{sup 3+} from two-photon process. The UC emission color of the Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped AgGdW{sub 2}O{sub 8} samples switched from green to white, and then to red depending on the concentrations of Er{sup 3+} and Tm{sup 3+}. After doping with Mo(VI), tetragonal AgGdW{sub 2}O{sub 8} was transformed into tetragonal AgGdMo{sub 2}O{sub 8}, resulting in a slightly enhanced UC luminescence intensity with the favor of the red emission of Er{sup 3+} ion.
ISSN 00255408
Educational Use Research
Learning Resource Type Article
Publisher Date 2016-01-15
Publisher Place United States
Journal Materials Research Bulletin
Volume Number 73


Open content in new tab

   Open content in new tab