Thumbnail
Access Restriction
Open

Author Muthuganesan, R. ♦ Sankaranarayanan, R. ♦ Balakrishnan, S.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ♦ CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ♦ EXCHANGE INTERACTIONS ♦ FUNCTIONS ♦ HEISENBERG MODEL ♦ QUANTUM ENTANGLEMENT ♦ QUBITS ♦ SPIN
Abstract It is known that nonlocal two-qubit gates are geometrically represented by tetrahedron called as Weyl chamber. Two edges of the Weyl chamber are formed by SWAP{sup ±α} family gates with 0 ≤ α ≤ 1. In this work SWAP{sup ±α} are being realized as two spin system with isotropic Heisenberg exchange interaction. The real parameter α is shown to be the function of duration and strength of interaction. Entanglement of the states generated by these two families of gates is studied with concurrence. Significance of time scale in realizing CNOT using SWAP{sup ±1/2} is highlighted.
ISSN 0094243X
Educational Use Research
Learning Resource Type Article
Publisher Date 2015-06-24
Publisher Place United States
Volume Number 1665
Issue Number 1


Open content in new tab

   Open content in new tab