Thumbnail
Access Restriction
Open

Author Krishna, N.
Researcher Krishna, N.
Source NIT Rourkela-Thesis
Content type Text
Educational Degree Master of Technology (M.Tech.)
File Format PDF
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Special computer methods ♦ Technology ♦ Engineering & allied operations
Subject Keyword Image Processing
Abstract As one of the most successful application of image analysis and understanding, face recognition has recently received significant attention, especially during the past few years. There are at least two reasons for this trend the first is the wide range of commercial and law enforcement applications and the second is the availability of feasible technologies after 30 years of research. The problem of machine recognition of human faces continues to attract researchers from disciplines such as image processing, pattern recognition, neural networks, computer vision, computer graphics, and psychology. The strong need for user-friendly systems that can secure our assets and protect our privacy without losing our identity in a sea of numbers is obvious. Although very reliable methods of biometric personal identification exist, for example, fingerprint analysis and retinal or iris scans, these methods depend on the cooperation of the participants, whereas a personal identification system based on analysis of frontal or profile images of the face is often effective without the participant’s cooperation or knowledge. The three categories of face recognition are face detection, face identification and face verification. Face Detection means extract the face from total image of the person. Face identification means the input to the system is an unknown face, and the system reports back the determined identity from a database of known individuals. Face verification means the system needs to confirm or reject the claimed identity of the input. My thesis was face verification in static images. Here a static image means the images which are not in motion. The eigenvectors based face verification algorithm gave the results on face verification in static images based upon the eigenvectors and neural network backpropagation algorithm. Eigen vectors are used for give the geometrical information about the faces. First we take 10 images for each person in same angle with different expressions and apply principle component analysis. Here we consider image dimension as 48 x48 then we get 48 eigenvalues. Out of 48 eigenvalues we consider only 10 highest eigenvaues corresponding eigenvectors. These eigenvectors are given as input to the neural network for training. Here we used backpropagation algorithm for training the neural network. After completion of training we give an image which is in different angle for testing purpose. Here we check the verification rate (the rate at which legitimate users is granted access) and false acceptance rate (the rate at which imposters are granted access). Here neural network take more time for training purpose. The proposed algorithm gives the results on face verification in static images based upon the eigenvectors and neural network modified backpropagation algorithm. In modified backpropagation algorithm momentum term is added for decrease the training time. Here for using the modified backpropagation algorithm verification rate also slightly increased and false acceptance rate also slightly decreased.
Education Level UG and PG
Learning Resource Type Thesis
Publisher Date 2007-01-01